This product is available through our 503A Compounding Pharmacy, ensuring versatile solutions tailored to meet your needs. If you do not have an account, please contact us.
Lipo Injection (Methionine / Choline Chloride) (30 mL Vial)
Lipo Injections are injectable treatments often used for fat loss or body contouring. They typically contain a combination of amino acids, vitamins, and lipotropic compounds like phosphatidylcholine, inositol, and methionine, which are believed to support fat breakdown. These injections are often marketed as weight loss aids, although their effectiveness is debated.
Mechanism of Action
The active ingredients help mobilize fat stores and enhance liver function, which aids in the natural elimination of fat. The compounds also help improve metabolism and detoxification.
Contraindications & Precautions
Contraindications:
⦁ Allergy to any component of the injection
⦁ Liver or kidney disease
⦁ Pregnancy and breastfeeding
Precautions:
⦁ Caution in patients with diabetes, gallbladder disease, or gastrointestinal issues
⦁ Avoid if there are existing allergic reactions or infections at the injection site
Interactions
Diuretics may increase the risk of dehydration
Adverse Reactions / Side Effects
Common: Swelling, redness, bruising at the injection site, nausea
Serious: Liver issues, allergic reactions, or infection at the injection site
Pregnancy & Breastfeeding
Pregnancy: Not recommended
Breastfeeding: Consult a doctor before use
Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain
- Best, C. H., Lucas, C. C., Ridout, J. H. & Patterson, J. M. DOSE-RESPONSE CURVES IN THE ESTIMATION OF POTENCY OF LIPOTROPIC AGENTS*.
- Kenney, J. L. & Carlberg, K. A. The effect of choline and myo-inositol on liver and carcass fat levels in aerobically trained rats. Int. J. Sports Med. 16, 114–116 (1995).
- Andersen, D. B. & Holub, B. J. The relative response of hepatic lipids in the rat to graded levels of dietary myo-inositol and other lipotropes. J. Nutr. 110, 496–504 (1980).
- Martínez, Y. et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids vol. 49 2091–2098 (2017).
- Zhou, X. et al. Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids vol. 48 1533–1540 (2016).
- S-Adenosyl-L-Methionine (SAMe): In Depth | NCCIH. https://www.nccih.nih.gov/health/sadenosyllmethionine-same-in-depth.– LinkOpens in New Tab
- Chiang, P. K. et al. S‐Adenosylmetliionine and methylation. FASEB J. 10, 471–480 (1996).
- Obeid, R. & Herrmann, W. Homocysteine and lipids: S-Adenosyl methionine as a key intermediate. FEBS Letters vol. 583 1215–1225 (2009).
- Sharma, A. et al. S-adenosylmethionine (SAMe) for neuropsychiatric disorders: A clinician-oriented review of research. Journal of Clinical Psychiatry vol. 78 e656–e667 (2017).
- Kalra, B., Kalra, S. & Sharma, J. B. The inositols and polycystic ovary syndrome. Indian J. Endocrinol. Metab. 20, 720–724 (2016).
- Bizzarri, M., Fuso, A., Dinicola, S., Cucina, A. & Bevilacqua, A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opinion on Drug Metabolism and Toxicology vol. 12 1181–1196 (2016).
- Donne, M. L. E., Metro, D., Alibrandi, A., Papa, M. & Benvenga, S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci. 23, 2293–2301 (2019).
- Shokrpour, M. et al. Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecol. Endocrinol. 35, 406–411 (2019).
- Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome.
- Wallace, T. C. et al. The underconsumed and underappreciated essential nutrient. Nutr. Today 53, 240–253 (2018).
- Elsawy, G., Abdelrahman, O. & Hamza, A. Effect of choline supplementation on rapid weight loss and biochemical variables among female taekwondo and judo athletes. J. Hum. Kinet. 40, 77–82 (2014).
- Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. (2020).
- The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes – PubMed. https://pubmed.ncbi.nlm.nih.gov/3343237/.– LinkOpens in New Tab
- Mato, J. M., Martínez-Chantar, M. L. & Lu, S. C. S-adenosylmethionine metabolism and liver disease. Annals of Hepatology vol. 12 183–189 (2013).
- Elshorbagy, A. K. et al. S-Adenosylmethionine Is Associated with Fat Mass and Truncal Adiposity in Older Adults. J. Nutr. 143, 1982–1988 (2013).
- Yue, T., Fang, Q., Yin, J., Li, D. & Li, W. S-adenosylmethionine stimulates fatty acid metabolism-linked gene expression in porcine muscle satellite cells. Mol. Biol. Rep. 37, 3143–3149 (2010).
- Da Silva, R. P., Nissim, I., Brosnan, M. E., Brosnan, J. T. & Labrador, C. ; Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296, 256–261 (2009).
- Ortmeyer, H. K. Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. Obes. Res. 4, 569–575 (1996).
- Pintaudi, B., Di Vieste, G. & Bonomo, M. The Effectiveness of Myo-Inositol and D-Chiro Inositol Treatment in Type 2 Diabetes. Int. J. Endocrinol. 2016, (2016).
- Fan, C. et al. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front. Pharmacol. 11, 354 (2020).
- Bevilacqua, A. & Bizzarri, M. Inositols in insulin signaling and glucose metabolism. International Journal of Endocrinology vol. 2018 (2018).
- Shimada, M., Hibino, M. & Takeshita, A. Dietary supplementation with myo-inositol reduces hepatic triglyceride accumulation and expression of both fructolytic and lipogenic genes in rats fed a high-fructose diet. Nutr. Res. 47, 21–27 (2017).
- Zhu, J., Wu, Y., Tang, Q., Leng, Y. & Cai, W. The Effects of Choline on Hepatic Lipid Metabolism, Mitochondrial Function and Antioxidative Status in Human Hepatic C3A Cells Exposed to Excessive Energy Substrates. Nutrients 6, 2552–2571 (2014).
- Rees, W. D., Wilson, F. A. & Maloney, C. A. Sulfur amino acid metabolism in pregnancy: The impact of methionine in the maternal diet. in Journal of Nutrition vol. 136 1701–1705 (American Institute of Nutrition, 2006).
- Vitagliano, A. et al. Inositol for the prevention of gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Archives of Gynecology and Obstetrics vol. 299 55–68 (2019).
- Isabella, R. & Raffone, E. Does ovary need D-chiro-inositol? J. Ovarian Res. 5, 1–5 (2012).
- Korsmo, H. W., Jiang, X. & Caudill, M. A. Choline: Exploring the growing science on its benefits for moms and babies. Nutrients 11, (2019).
- Cheatham, C. L. et al. Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 96, 1465–1472 (2012).
- Ross, R. G. et al. Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia Risk. Am. J. Psychiatry 170, 290–298 (2013).
- Opening Statement by Roy Pitkin on Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. https://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=s6015.– LinkOpens in New Tab
- SAMe – Mayo Clinic. https://www.mayoclinic.org/drugs-supplements-same/art-20364924.– LinkOpens in New Tab
- Choline – Health Professional Fact Sheet. https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/.
